Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Chinês | MEDLINE | ID: mdl-38297876

RESUMO

Chronic rhinosinusitis (CRS) is a common chronic inflammatory disease in otorhinolaryngology, in which eosinophilic chronic rhinosinusitis with nasal polyps represents the difficult-to-treat chronic rhinosinusitis (DTCRS) with poor prognosis. DTCRS has a poor prognosis, which seriously affects people's physical and mental health, and is treated with various means, including medication, biotherapy and surgery. In recent years, endoscopic sinus surgery and postoperative local administration of nasal hormones as one of its treatment methods have achieved good results. In this paper, we review the relevant literature at home and abroad and give an overview for the treatment means of surgery, focusing on the effect of endoscopic sinus surgery on the distributable range of postoperative nasal glucocorticosteroids in patients with DTCRS, and then on the postoperative efficacy of the treatment, with a view to providing a reference for the clinical treatment of DTCRS.


Assuntos
Pólipos Nasais , Seios Paranasais , Rinite , Sinusite , Humanos , Rinite/terapia , Seios Paranasais/cirurgia , Sinusite/terapia , Corticosteroides/uso terapêutico , Pólipos Nasais/cirurgia , Doença Crônica
2.
Vet Sci ; 9(11)2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36423079

RESUMO

Mycoplasmas bovis (M. bovis) is an important pathogen that causes a variety of diseases, such as bovine respiratory diseases and causes significant losses to the national cattle industry every year, seriously affecting the development of the cattle industry worldwide. The pathogenic mechanism of M. bovis infection is still unknown, which leads to the lack of timely diagnosis and treatment. In this study, embryonic bovine lung (EBL) cells, infected with M. bovis were collected for gene profiling and detection of marker genes in the mTOR signaling pathway. The result showed that M. bovis infection significantly inhibits EBL growth in a dose-dependent manner. The transcription profiling data uncovered that M. bovis infection repressed a series of gene expressions in EBL cells, which are mainly related to metabolic process and immune response. Notably, many marker genes in the PI3K-Akt-mTOR pathway showed down-regulation after M. bovis infection. Further evidence showed that M. bovis infection inhibits expression of mTOR signaling pathway marker genes in EBL cells, which are time dependent. To further understand the M. bovis-induced inhibitory effect of mTOR signaling pathway, this study employed FBS as a supplement for exogenous nutrients and found that addition of a high concentration of FBS can rescue M. bovis-induced cell damage. In addition, a high concentration of FBS can rescue down-regulated mTOR signaling, including increasing transcriptional expression and protein phosphorylation level of mTOR pathway marker genes. This study demonstrated that M. bovis infection leads to inhibition of the nutrient metabolic pathway mTOR in a time-dependent manner, which would be helpful to further understand M. bovis infection mechanism and develop a new efficient anti-mycoplasma strategy targeting mTOR signaling.

3.
ACS Appl Mater Interfaces ; 9(35): 30035-30045, 2017 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-28812342

RESUMO

Boron nitride nanosheet (BNNS) films receive wide attention in both academia and industry because of their high thermal conductivity (TC) and good electrical insulation capability. However, the brittleness and low strength of the BNNS film largely limit its application. Herein, functionalized BNNSs (f-BNNSs) with a well-maintained in-plane crystalline structure were first prepared utilizing urea in the aqueous solution via ball-milling for the purpose of improving their stability in water and enhancing the interaction with the polymer matrix. Then, a biodegradable and highly thermally conductive film with an orderly oriented structure based on cellulose nanofibers (CNFs) and f-BNNSs was prepared just by simple vacuum-assisted filtration. The modification of the BNNS and the introduction of the CNF result in a better orientation of the f-BNNS, sufficient connection between f-BNNS themselves, and strong interaction between f-BNNS and CNF, which not only make the prepared composite film strong and tough but also possess higher in-plane TC. An increase of 70% in-plane TC, 63.2% tensile strength, and 77.8% elongation could be achieved for CNF/f-BNNS films, compared with that for CNF/BNNS films at the filler content of 70%. Although at such a high f-BNNS content, this composite film can be bended and folded. It is even more interesting to find that the in-plane TC could be greatly enhanced with the decrease of the thickness of the film, and a value of 30.25 W/m K can be achieved at the thickness of ∼30 µm for the film containing 70 wt % f-BNNS. We believe that this highly thermally conductive film with good strength and toughness could have potential applications in next-generation highly powerful and collapsible electronic devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...